
© 2021 Arm

Phil Ridley

phil.ridley@arm.com

3rd March 2021

AI/ML with Arm HPC

Centre for Development of Advanced Computing 
(C-DAC) / National Supercomputing Mission 

(NSM) 
Arm in HPC Course



2 © 2021 Arm

Agenda
• Containers

• ML and AI
• Processor developments
• Community support
• Libraries and Applications

• ISA Developments



© 2021 Arm

Containers



4 © 2021 Arm

Arm enables containerization through standardization
Ensuring standard interfaces work on Arm enables multiple technologies

Approach

All the "level-set" work is done.

Arm is now focusing on enabling leading technologies

Arm works with the standards bodies to see that Arm is well supported

Example: Arm supporting containers drives Aarch64 support in Docker

Standards bodies define the interfaces between layers

Example: Open Containers Initiative (OCI)



5 © 2021 Arm

Arm & Docker Partner to Deliver Frictionless Cloud-Native 
Software Development

Initial phase is focused on Integration of 
Arm capabilities into Docker Desktop 
Community to enable a seamless 
developer environment

Docker Enterprise Engine for Amazon EC2 
A1 instances 

Additional work will address end-to-end 
management of full product life cycle; 
unified development environments for 
heterogeneous compute and scaling cloud-
native benefits to consolidate edge 
workloads

01

02

03



6 © 2021 Arm

04 03

0201

Docker Desktop is the de 
facto standard Cloud 
Native development 

platform for containerized 
applications

Docker on Arm

This partnership makes it easier 
for millions of developers 

already using Docker to develop 
containers on Arm

No changes needed to Docker 
tooling & processes in order to 

start building for Arm

• 5,386,145 base images on 
Docker Hub

• 51,460 Arm images
• 46,167 Arm64 images

• Official 166 Docker images
• Arm support 118 out of 166

official images



© 2021 Arm

Machine Learning



8 © 2021 Arm

Machine Learning

TensorFlow

• Arm 
actively 
involved

Deepbench

• Arm 
actively 
involved

Torch

• Community 
maintained

Mahout

• Available 
via Apache 
Bigtop

Weka

• Community 
maintained

Caffe

• Community 
maintained

Theano (EOL)

• Community 
maintained



9 © 2021 Arm

Increasing ML performance over CPU generations

0

5

10

15

20

25

30

A53 A72 Helios N1 (Ares) Zeus

0.44 1.00 1.35

5.74

25.72

Int8 GEMM kernel performance
(normalized to A72)

Helios
>3x ML performance 
improvement over Cortex-A53
(First Multi-threaded CPU)

A72
2x ML performance 
improvement over Cortex-A53

N1
>5x ML performance 
improvement over Cortex-A72
(PPA leadership & ML 
enhancements)

Zeus
>25x ML performance 
improvement over Cortext-A72
(Breakthrough ML performance)



10 © 2021 Arm

Flexibility

Ease of 
programming

ML 
processing

requirements

ML programming looks 
like CPU programming 
as much as possible

Sub-optimal to integrate 
specialized accelerators for 
intermittent ML processing

ML is evolving – design 
optimization space for 
accelerators not sufficiently 
converged

Arch
• Dot product instructions (v8.0 – v8.4)

Arch

• Matrix-multiply-and-accumulate 
instructions (*MMLA*) (v8.6)

Micro Arch
• SVE vector length

Arch
• Bfloat16 support (v8.6)

Features enhancing ML performance on 
Arm CPUs

Primary drivers for on-CPU ML

On-CPU ML processing



11 © 2021 Arm

On-CPU Machine Learning

Easy to use, high performing ML software stack on 
Aarch64 using ML-specific CPU features

Easy to use

Container 
images and 

Python 
Packages

Popular ML
frameworks 
support Arm 

as a first-
class citizen

Wide variety 
of inference 
and training 
workloads

Image 
classification

Object 
detection

Using Arm architecture features 

Large core 
count

INT8, 
Bfloat16, 

FP16, FP32
SVE / SVE2

Matrix 
Multiplier 
Extension

On the latest Aarch64 
hardware

Arm 
Neoverse 
N1, Zeus, 
Poseidon

Marvell 
ThunderX2

Fujitsu 
A64FX



© 2021 Arm

Machine Learning and 
Artificial Intelligence



13 © 2021 Arm

Machine Learning and Artificial Intelligence



14 © 2021 Arm

ML Frameworks on server-class Aarch64 platforms

• Recent effort to enable server-scale on-CPU ML workloads on 
AArch64

• Build guides for key frameworks available:
• Tensorflow - https://gitlab.com/arm-

hpc/packages/wikis/packages/tensorflow
• PyTorch - https://gitlab.com/arm-hpc/packages/wikis/packages/pytorch
• MXNET - https://gitlab.com/arm-hpc/packages/wikis/packages/mxnet
• And guides for key dependencies: CPython; NumPy etc.

• Currently focusing on inference problems
• ML Perf (https://mlperf.org) for realistic workloads.

https://gitlab.com/arm-hpc/packages/wikis/packages/tensorflow
https://gitlab.com/arm-hpc/packages/wikis/packages/pytorch
https://gitlab.com/arm-hpc/packages/wikis/packages/mxnet
https://mlperf.org/


15 © 2021 Arm

TensorFlow and maths libraries: on AArch64
• Arm Performance Libraries

• Micro- architecture optimized 
• Targeting server class cores
• High release cadence

• GEMMs at the core of matmul and 
convolutions

• Leveraging ArmPL has potential to 
deliver optimal performance in key 
kernels for on-CPU, server scale ML 
workload.

TensorFlow

Eigen

oneDNN

ArmPL

AArch64

Framework

Data
& Models

DL lib

Maths Kernels

ResNet50mobilenet

Imagenet coco

= portable / ported = impl. / x86 specific
(not portable)

Hardware



16 © 2021 Arm

Where to optimise: TensorFlow and its backend

TensorFlow: high-level Python API, C++ backend

oneDNN (previously DNNL, MKL-DNN)

AArch64 Target

ArmPL GEMM

Framework

Data & 
Models

Work 
scheduling

ResNet50(101)DeepLabImageNet TenCent ML

Hardware

Backend
libraries

Kernels

Eigen::ThreadPool: POSIX threads, GEMM blocking in (m,n,k)

Eigen

C++ ref AVX512 JITBLAS + ref libamath Eigen GEBP

ArmPL

= works on AArch64 = not supported= option

https://github.com/tensorflow/tensorflow/tree/v1.15.0-rc3
https://intel.github.io/mkl-dnn/
https://gitlab.com/libeigen/eigen/-/tree/master/unsupported%2FEigen%2FCXX11%2Fsrc%2FThreadPool
https://gitlab.com/libeigen/eigen


© 2021 Arm

ISA Developments



18 © 2021 Arm

New Data Type Support: BFloat16
• New addition to Armv8.6-A

• Adds support for BF16

• Instructions for NEON and SVE
• Including:

– BFDOT: Dot Product (1x2)x(2x1)
– BFMMLA: Mat Multiply (2x4)x(4x2)

• Significant performance gains 
• ML training and inference workloads

• Supported in Arm libraries
• Arm NN and Arm Compute Libraries



19 © 2021 Arm

FMMLA: High Performance Matrix Multiplication 
• Added to Armv8.6

• NEON support for INT and BF16
• FMMLA instructions for FP (SVE)

• 2x2 matrix multiplication
• Works on multiple of vector granules
• 2x2xFP32 = 128-bit granules
• Assumes vector length is multiple

• May require layout transformations
• Outer loop to avoid cost

• Will accelerate maths libraries

0 1

2 3

0 1

2 3

0 1

2 3
X =

Left (L)
2x2xFP32

Right (R)
2x2xFP32

Dest (D)
2x2xFP32

D[0] += (L[0] * R[0]) + (L[1] * R[1]) 
D[1] += (L[0] * R[2]) + (L[1] * R[3]) 
D[2] += (L[2] * R[0]) + (L[3] * R[1]) 
D[3] += (L[2] * R[2]) + (L[3] * R[3])



© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm


